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Abstract

A frequency domain approach is proposed to suppress output vibration from periodic exogenous disturbances for SISO

systems by using nonlinear feedback. Based on the frequency domain theory of nonlinear Volterra systems, the analytical

relationship between system output frequency response and controller parameters is obtained, and a series of associated

theoretical results and techniques are discussed for the purpose of nonlinear feedback analysis and design. It is shown that

a low degree nonlinear feedback may be sufficient for some control problems. A general procedure is provided for this

frequency domain analysis and design. This paper provides a systematic frequency domain approach to exploiting the

potential advantage of nonlinearities to achieve a desired frequency domain performance for active/passive vibration

control or energy dissipation systems. The new approach is demonstrated through an analysis and design of a nonlinear

feedback for a simple vibration control system. By properly introducing a simple nonlinear damping to the system, the

performance of the system output response when subject to a periodic disturbance is improved, compared with a linear

damping controller.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Suppression of periodic disturbances covers a wide range of applications, for example, active control and
isolation of vibrations in engineering and vehicle systems. Traditionally, an increase in damping can reduce the
response at the resonance. However, this is often at the expense of degradation of isolation at high frequencies
[1]. Many methods have been proposed to deal with this problem, such as optimal control, H-infinity control,
‘‘skyhook’’ damper, repetitive learning control, optimization, etc. [1–4]. A much more comprehensive and
up-to-date survey can refer to Ref. [5]. Nonlinear feedback is an approach that has been noted recently by
some researchers [6–8]. It is shown in Ref. [4] that, although it is not possible to use linear time-invariant
controllers to robustly stabilize a controlled plant and to achieve asymptotic rejection of a periodic
disturbance, the problem is solvable by using a nonlinear controller for a linear plant subjected to a triangular
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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wave disturbance. Based on the Hamiltonian system theory, an optimal nonlinear feedback control strategy is
proposed in Ref. [8] for randomly excited structural systems. It has also been reported many times that existing
nonlinearities or deliberately introduced nonlinearities may bring benefits to control system design [1]. Hence,
the design of a nonlinear feedback controller to suppress periodic disturbances has great potential to achieve a
considerably improved control performance. However, it should be noted that most of these existing methods
mentioned above are based on state space and in the time domain, and some of those usually involve
complicated design procedure in mathematics.

Recently, some progress has been achieved in the analysis of nonlinear systems in the frequency domain
[9–13]. The algorithms for determination of the generalized frequency-response functions (GFRFs) and
output frequency response have been obtained for nonlinear Volterra systems [9]. Based on these results, the
concept of output frequency-response function (OFRF) for nonlinear Volterra systems was proposed in
Ref. [13], and was further studied in Ref. [10]. The OFRF reveals an analytical relationship between system
output spectrum and system model parameters for a wide class of nonlinear systems and provides an
important basis for the analysis and design of output behaviour of nonlinear systems in the frequency domain.
For a linear controlled plant subject to periodic disturbances, if a nonlinear feedback is introduced to produce
a nonlinear closed-loop system, the relationship between the disturbance and the system output is nonlinear
and can, under certain conditions, be described in the frequency domain by using the OFRF to explicitly relate
the controller parameters to the system output frequency response. Therefore, by properly designing the
controller parameters based on this explicit relationship defined by the OFRF, the effect of the periodic
disturbance on the system output frequency response could be significantly suppressed. Motivated by this
idea, a frequency domain approach to analysis and design of nonlinear feedback for the exploitation of the
potential advantage of nonlinearities is proposed in this study to suppress sinusoidal exogenous disturbances
for a linear controlled plant.

This paper is organized as follows. The problem formulation is given in Section 2, which is divided into
several basic problems that can be addressed separately. Section 3 is concerned with some fundamental issues
of the analysis and design of nonlinear feedback corresponding to different basic problems. Some theoretical
results and techniques needed to solve these basic problems are established. Section 4 illustrates the
implementation of the new approach by tackling a simple vibration system. Simulation results are provided to
demonstrate the new approach.
2. Problem formulation

Consider an SISO linear system described by the following differential equation:XL

l¼0

CxðlÞD
lxþ buþ eZ ¼ 0, (1)

y ¼
XL�1
l¼0

CyðlÞD
lxþ du, (2)

where x, y, u, ZAR1 represent the system state, output, control input, and an exogenous disturbance input,
respectively; Z stands for a known, external, bounded and periodical vibration, which can be described by a
summation of multiple sinusoidal functions; L is a positive integer; Dl is an operator defined by Dlx ¼ dlx/dtl.
The model of system (1–2) can also be written into a state-space form

_X ¼ AXþ Buþ EZ, (3)

y ¼ CXþ du, (4)

where X ¼ [x, D1x,y,DL�1x]TARL is the system state variable, A and C are matrixes with appropriate
dimensions, B ¼ [01� (L�1), b]T, E ¼ [01� (L�1), e]T. The problem to be addressed in the present study is as
follows.
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Given a frequency interval I(o) and a desired magnitude level of the output frequency response Y* over this
frequency interval, find a nonlinear state feedback control law

u ¼ �jðx;D1x; . . . ;DL�1xÞ (5)

such that

max
o2IðoÞ

ðY ðjoÞY ð�joÞÞpY n, (6a)

where the feedback control law �j(x, D1x,y,DL�1x) is generally a nonlinear function of x, D1x,y,DL�1x,
with the linear state/output feedback as a special case; Y(jo) is the spectrum of the system output. In order to
achieve Eq. (6a), at present it can be realized by transforming Eq. (6a) to

max
ok2IðoÞ

k¼1;2;...;k̄

ðY ðjokÞY ð�jokÞÞpYn. (6b)

That is, evaluate the output spectrum at a series of frequency points such that the maximum value is
suppressed to a desired level. The desired control law (5) should satisfy Eq. (6b). In the following, suppose

I(o) ¼ o0, that is only the output response at a specific frequency is considered. Let Y ¼ Y ðjoÞY ð�joÞ
��
ðo0;uÞ

,

then Y 0 ¼ Y ðjoÞY ð�joÞ
��
ðo0;0Þ

shows the magnitude of the system output frequency response at frequency o0

under zero control input. Obviously, it should be

Y ðjoÞY ð�joÞ
��
ðo0;uÞ

pYnoY 0 ¼ Y ðjoÞY ð�joÞ
��
ðo0;0Þ

. (7)

To obtain a nonlinear feedback controller, j(x, D1x,y,DL�1x) can be written into a polynomial form in
terms of x, D1x,y,DL�1x as

jðx;D1x; . . . ;DL�1xÞ ¼
XM
p¼1

XL�1
l1;���;lp¼0

Cp0ðl1; . . . ; lpÞ
Yp

i¼1

Dli x, (8)

where M is a positive integer representing the maximum degree of nonlinearity in terms of Dix(t)

(i ¼ 0,y,L�1);
PL�1

l1���lp¼0
ð�Þ ¼

PL�1
l1¼0
� � �
PL�1

lp¼0
ð�Þ. The nonlinear function in Eq. (8) includes a general class of

possible linear and nonlinear functions of Dix (i ¼ 0,y,L�1), which also enables the frequency-response
functions of the closed-loop system can be obtained by the existing theory of the authors in Refs. [9–11]. Since
Dix ¼ e(i+1)TX, where e(i+1) is an L-dimensional column vector whose (i+1)th element is 1 with all other
terms zero, j(x, D1x,y,DL�1x) can also be written as a function of X, i.e., j(X). For the parameters Cp0(.)
(p ¼ 1,y,M), when p ¼ 1 the parameters will be referred to as the linear parameters corresponding to the
linear terms in Eq. (8), e.g., C1,0(2)(d

2x(t)/dt2). All the other parameters in Eq. (8) will be referred to as

the nonlinear parameters corresponding to the nonlinear terms
Qp

i¼1Dli xðtÞ. p is the nonlinear degree of the

nonlinear parameter Cp0( � ). Let

CðM ;LÞ ¼ Cp0ðl1; . . . ; lpÞ

p ¼ 1; . . . ;M

li ¼ 0; . . . ;L� 1

i ¼ 1; . . . ; p

�������
0B@

1CA, (9)

which include all the parameters in Eq. (8). Substituting Eq. (8) into Eqs. (1) and (2) yields the closed-loop
system as XM

p¼1

XL

l1;...;lp¼0

C̄p0ðl1; . . . ; lpÞ
Yp

i¼1

Dli xþ eZ ¼ 0, (10a)

XM
p¼1

XL�1
l1;...;lp¼0

~Cp0ðl1; . . . ; lpÞ
Yp

i¼1

Dli x ¼ y; (10b)
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where

C̄10ðl1Þ ¼ Cxðl1Þ � bC10ðl1Þ; ~C10ðl1Þ ¼ Cyðl1Þ � dC10ðl1Þ,

C̄p0ðl1; . . . ; lpÞ ¼ �bCp0ðl1; . . . ; lpÞ; ~Cp0ðl1; . . . ; lpÞ ¼ �dCp0ðl1; . . . ; lpÞ

for p ¼ 1,?,M, li ¼ 0,?,L, and i ¼ 1,?, p. System (10) is described by a nonlinear differential equation
model, whose GFRF can be obtained [9]. According to the results in Ref. [14], the model can represent a wide
class of nonlinear systems. This implies that the nonlinear control law (8) can be used to achieve different
control objectives of interests.

The task for the nonlinear feedback design is to determine M and a range for the controller parameters in
Eq. (9) to make the closed-loop system (10) bounded stable around its zero equilibrium, and then to determine the
specific values for the controller parameters from the OFRF which defines the relationship between the closed-
loop system output spectrum and controller parameters to achieve the required steady-state performance (7).

There are generally four fundamental issues to be addressed for the nonlinear feedback design problem as follows:
(a)
 Determination of the analytical relationship between the system output spectrum and the nonlinear
controller parameters.
(b)
 Determination of an appropriate structure for the nonlinear feedback controller. Only significant
nonlinear terms are needed in the controller to achieve the control objective.
(c)
 Derivation of a range for the values of the control parameters over which the stability of the closed-loop
nonlinear system is guaranteed.
(d)
 Development of an effective numerical method for the practical implementation of the feedback controller
design.
The focus of Section 3 is to investigate these fundamental issues. A simulation study will be presented
thereafter to illustrate these results.

3. Fundamental results for nonlinear feedback analysis and design

3.1. OFRF

In this section, the output frequency response of the closed-loop nonlinear system (10) is derived. The
relationship between the system output spectrum and the controller parameters are investigated to produce an
important basis for the nonlinear feedback analysis and design.

3.1.1. Output spectrum of the closed-loop system

The nonlinear frequency domain approach in this study is based on the Volterra-series approximation. It
has been shown that, any time invariant, causal, nonlinear system with fading memory can be approximated
by a finite Volterra series [15]. It was also proved in Refs. [16,17] the existence of a locally convergent Volterra-
series representation for the input–output relation of a large class of continuous-time nonlinear systems.
Therefore, with the BIBO stability condition for the controller parameters which will be studied in Section 3.3,
the relationship between the output y(t) and the input Z(t) of system (10) can be approximated by Volterra
functional polynomials up to the Nth order as

yðtÞ ¼
XN

n¼1

ynðtÞ; yn ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞ
Yn

i¼1

Zðt� tiÞdti, (11)

where hn(t1,y, tn) is the nth-order Volterra kernel of system (10) corresponding to the input–output
relationship from Z(t) to y(t). When Eq. (11) is a multitone function

ZðtÞ ¼
XK

i¼1

F ij j cosðoitþ ffF iÞ (12)
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(note that Fi is a complex number, +Fi is the argument and |Fi| is the modulus) the system output spectrum
can be obtained by extending the result in [11]

Y ðjoÞ ¼
XN

n¼1

1

2n

X
ok1
þ���þokn¼o

Hnðjok1
; . . . ; jokn

ÞF ðok1
Þ � � �F ðokn

Þ, (13)

where

F ðoÞ ¼
Fij je

jffFi if o 2 ok; k ¼ �1; . . . ;�Kf g;

0 else;

(
(14)

Hnðjok1
; . . . ; jokn

Þ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞe
�jðo1t1þ���þontnÞ dt1 � � � dtn. (15)

Eq. (15) is the nth-order GFRF of system (10) for the relationship between Z(t) and y(t), which can be obtained
as follows.

Proposition 1. The GFRFs Hnðjok1
; . . . ; jokn

Þ from the disturbance Z(t) to the output y(t) of nonlinear system

(10) can be determined as

Hnðjo1; . . . ; jonÞ ¼
Xn

p¼1

XL�1
l1���lp¼0

~Cp0ðl1; . . . ; lpÞH
1
n;pðjo1; . . . ; jonÞ, (16a)

H1
n;pðjo1; . . . ; jonÞ ¼

Xn�pþ1

i¼1

H1
i ðjo1; . . . ; joiÞH

1
n�i;p�1ðjoiþ1; . . . ; jonÞðjo1 þ � � � þ joiÞ

lp , (16b)

H1
n;1ðjo1; . . . ; jonÞ ¼ H1

nðjo1; . . . ; jonÞðjo1 þ � � � þ jonÞ
l1 ; H1

1ðjo1Þ ¼ e

,XL

l1¼0

C̄10ðl1Þðjo1Þ
l1 , (16c)

H1
nðjo1; . . . ; jonÞ ¼ �

1

e
H1

1ðjo1 þ � � � þ jonÞ
Xn

p¼2

XL�1
l1���lp¼0

C̄p0ðl1 � � � lpÞH
1
n;pðjo1; . . . ; jonÞ � edðn� 1Þ

0@ 1A (16d)

and

dðnÞ ¼
1 n ¼ 0;

0 otherwise:

�
See Appendix A for the proof. Note that the nth-order GFRF from Z(t) and x(t) can directly be obtained

from Ref. [9] which is denoted by H1
nðjo1; . . . ; jonÞ. However, the nth-order GFRF from Z(t) and y(t) cannot

be computed by directly applying the results in Ref. [9], because system (10) having a nonlinear output is not
consistent with the model studied in Refs. [9,10,13]. From Proposition 1, the GFRFs can be computed
recursively from the time domain model (10), and the output spectrum of system (10) can be obtained
analytically from Eqs. (13,16), which are an explicit function of the parameters in the control law (8).
Therefore, the control law (8) can be studied in the frequency domain. In order to make clear the analytical
relationship between the system output spectrum and model parameters from these recursive computations
and to make light on the selection of feedback nonlinearities which are to be possibly included in the control
law (8), the OFRF of system (10) can be expressed as a polynomial function of the nonlinear controller
parameters in Eq. (9) according to Refs. [10,13], i.e.,

Y ðjoÞ ¼ P0ðjoÞ þ a1P1ðjoÞ þ a2P2ðjoÞ þ � � � , (17a)

where P0(jo) is the linear part of the system output frequency response, Pi(jo) (iX1) represents the effects of
higher order nonlinearities, and ai (i ¼ 1,2,y) are functions of the nonlinear controller parameters which can
be determined by following Ref. [10]. Moreover, for a nonlinear controller parameter c in Eq. (9), there exists a
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series of functions of frequency o {P̄iðjoÞ, i ¼ 0,1,2,3,y} such that

Y ðjoÞ ¼ P̄0ðjoÞ þ cP̄1ðjoÞ þ c2P̄2ðjoÞ þ � � � . (17b)

The property above explicitly demonstrates the relationship between the system output spectrum and the
nonlinear controller parameters, and enables the OFRF to be determined by using a simple numerical method,
which will be discussed in Section 3.4. Thus, it considerably facilitates the analysis and design of the nonlinear
feedback in the frequency domain. In order to reveal the contribution of the nonlinear controller parameters of
different degrees to the output spectrum clearly and thus make light on the structure selection of the control law
(8), some useful results regarding the parametric characteristic of the OFRF are discussed in the following section.
3.1.2. Parametric characteristic analysis of the output spectrum

The parametric characteristic analysis of the system output spectrum is to investigate the polynomial
structure of Eq. (17a) in detail, and to reveal how the frequency-response functions in Eqs. (13,16a–d) depend
on the nonlinear controller parameters (i.e., Cp0(.) for p41) in Eq. (9).

Define the pth-degree parameter vector

Cp0 ¼ Cp0ð0; . . . ; 0Þ;Cp0ð0; . . . ; 1Þ; . . . ;Cp0ðL; . . . ;L|fflfflfflfflffl{zfflfflfflfflffl}
p

Þ

24 35,
which includes all the parameters of degree p in Eq. (9). To obtain the parametric characteristics of the output
spectrum, the coefficient extraction (CE) operator is needed, which has two operations ‘‘�’’ and ‘‘�’’, and was
defined in Ref. [10]. Following the method in Ref. [10], the parametric characteristics of the GFRF
H1

nðjo1; . . . ; jonÞ from u(t) to y(t) can be obtained as for n41

CEðH1
nðjo1; . . . ; jonÞÞ ¼ �

n

p¼2
ðCp;0 � CEðH1

n;pðjo1; . . . ; jonÞÞÞ ¼ �
n

p¼2
ðCp;0 � CEðH1

n�pþ1ðjo1; . . . ; jonÞÞÞ

¼ Cn0 � �
ðnþ1Þ=2½ 	

p¼2
ðCp0 � CEðH1

n�pþ1ð�ÞÞÞ. (18)

For n ¼ 1, CEðH1
1ðjo1ÞÞ ¼ 1. Here, [n/2] means to get the integer part of [.]. From the invariant property of

the CE operator, it follows for the nonlinear controller parameters in Eq. (9) that

CEðC̄p0ðl1; . . . ; lpÞÞ ¼ Cp0ðl1; . . . ; lpþqÞ;CEð ~Cp0ðl1; . . . ; lpÞÞ ¼ Cp0ðl1; . . . ; lpÞ.

Applying CE operator to Eq. (16a) for the nonlinear parameters in Eq. (9),

CEðHnðjo1; . . . ; jonÞÞ ¼ CE
XL

l1¼0

~C1;0ðl1ÞH
1
n;1ðjo1; . . . ; jonÞ

 
þ
Xn

p¼2

XL

l1;...;lp¼0

~Cp0ðl1; . . . ; lpÞH
1
n;pðjo1; . . . ; jonÞ

1A
¼ CE

XL

l1¼0

ðCyðl1Þ � C10ðl1ÞÞH
1
n;1ðjo1; . . . ; jonÞ

 

þ
Xn

p¼2

XL

l1���lp¼0

ð�dÞCp0ðl1; . . . ; lpÞH
1
n;pðjo1; . . . ; jonÞ

1A
¼

1; n ¼ 1;

�
n

p¼2
ðCp0 � CEðH1

n;pðjo1; . . . ; jonÞÞÞ; n41:

8><>: (19)

Therefore, with respect to the nonlinear parameters in Eq. (9), the parametric characteristics of the GFRFs
Hnðjo1; . . . ; jonÞ from Z(t) to y(t) is the same as those of the GFRFs H1

nðjo1; . . . ; jonÞ from u(t) to y(t), i.e.,

CEðH2
nð�ÞÞ ¼ CEðH1

nð�ÞÞ for n40. (20)
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That is, the effect from the nonlinear parameters in Eq. (9) on the GFRFs Hnðjo1; . . . ; jonÞ is the
same as that on the GFRFs H1

nðjo1; . . . ; jonÞ. Eqs. (18)–(20) reveal how the GFRFs depend on the nonlinear
controller parameters in Eq. (9). Based on these results, the parametric characteristic of the OFRF can be
obtained as

CEðY ðjoÞÞ ¼ CE
XN

n¼1

1

2n

X
ok1
þ���þokn¼o

H2
nðjok1

; . . . ; jokn
ÞF ðok1

Þ; . . . ;F ðokn
Þ

0@ 1A
¼ CE

XN

n¼1

X
ok1
þ���þokn¼o

H2
nðjok1

; . . . ; jokn
Þ

0@ 1A ¼ CE
XN

n¼1

H2
nðjok1

; . . . ; jokn
Þ

 !
¼ CEðH2

1ð�ÞÞ � CEðH2
2ð�ÞÞ � � � � � CEðH2

N ð�ÞÞ

¼ CEðH1
1ð�ÞÞ � CEðH1

2ð�ÞÞ � � � � � CEðH1
N ð�ÞÞ. (21a)

Therefore, according to the results in Ref. [10], there exist a complex-valued function vector ~FnðjoÞ with
appropriate dimension such that

Y ðjoÞ ¼ �
N

n¼1
CEðH1

nðjo1; . . . ; jonÞÞ

� �
~F nðjoÞ. (21b)

This is the detailed polynomial function of Eq. (17a). Eq. (21b) provides a straightforward expression for
the relationship between system output spectrum and the controller parameters. Now the coefficients of the
polynomial function (17a) can be determined as

a1 a2 a3 � � � aK

� �
¼ CEðY ðjoÞÞ ¼ CEðH1

1ð�ÞÞ � CEðH1
2ð�ÞÞ � � � � � CEðH1

N ð�ÞÞ, (21c)

where K is the dimension of the vector CEðH1
1ð�ÞÞ � CEðH1

2ð�ÞÞ � � � � � CEðH1
Nð�ÞÞ.

In order to understand more these parametric characteristics, the following results are given.

Proposition 2. The elements in CEðH1
nðjo1; . . . ; jonÞÞ include and only include all the parameter monomial

(consisting of the nonlinear parameters in Eq. (9)) in Cp0 � Cr10 � Cr20 � � � � � Crk0 for 0pkpn�2, satisfying

pþ
Pk

i¼1ri ¼ nþ k; 2pripn� 1, and 0pppn.

Proposition 2 is a simple case of Proposition 2 in Ref. [10], and demonstrates whether and how a nonlinear

parameter in Eq. (9) is included in CEðH1
nðjo1; . . . ; jonÞÞ. Different parameters may form one monomial

acting as an element in CEðH1
nðjo1; . . . ; jonÞÞ, and thus have a coupled effect on H1

nðjo1; . . . ; jonÞ. If a

nonlinear parameter appears in CEðH1
nðjo1; . . . ; jonÞÞ, this implies that it has an effect on H1

nðjo1; . . . ; jonÞ and

thus on Y(jo). If this nonlinear parameter is an independent element in CEðH1
nðjo1; . . . ; jonÞÞ, then it has an

independent effect on Y(jo). Furthermore, if a parameter frequently appears in CEðH1
nðjo1; . . . ; jonÞÞ with

different monomial degrees, this may implies that this parameter has more strong effect on H1
nðjo1; . . . ; jonÞ

and thus Y(jo). For this reason, the parametric characteristic analysis of H1
nðjo1; . . . ; jonÞ can make light on

the effect from different nonlinear parameters on H1
nðjo1; . . . ; jonÞ and Y(jo).

From Proposition 2, the term (Cn0)
i should be included in the GFRF Hm(.), where m is computed as

m+k ¼ m+i�1 ¼ ni. Hence, m ¼ ni�i+1 ¼ 1+(n�1)i. It can be seen that, when n is smaller, Cn,0 will
contribute independently to more orders of the GFRFs whose orders are (n�1)i+1 for i ¼ 1,2,3,y; and if n is
larger, Cn,0 can only affect the GFRFs of order higher than n. It is known that for a Volterra system, the
system nonlinear dynamics is usually dominated by the first several order GFRFs [15]. This implies that the
nonlinear terms with coefficient Cn,0 of smaller nonlinear degree, e.g., 2 and 3, take much greater roles in
the GFRFs than other pure output nonlinearities. This property is significant for the selection of possible
nonlinear terms in the feedback design. Moreover, it can be verified from Proposition 2 that, if the 2nd and
3rd degree nonlinear control parameters are all zero, i.e., C20 ¼ 0 and C30 ¼ 0, then H2(.) ¼ 0, and H3(.) ¼ 0.
However, even if Cn0 ¼ 0 (for n43), the nth-order GFRF Hn(.) is not zero, providing there are nonzero terms
in C20 or C30. This further demonstrates that the nonlinear controller parameters in C20 and C30 have a more
important role in the determination of the GFRFs than any other nonlinear parameters, and thus has a more
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important effect on the output spectrum. These imply that a lower degree nonlinear feedback may be sufficient
for some control problems. These provide a guidance to choose from the nonlinear candidate terms included
in Eq. (9).

3.2. The structure of the nonlinear feedback

The determination of the structure for the nonlinear state feedback function (8) is an important task
to be tackled. Firstly, as discussed in Section 3.1.2, the structure parameter M in Eq. (8) should be
chosen as small as possible since lower degree of nonlinear terms have much larger contributions in the
output spectrum. It can be increased gradually until the control objective is achieved. Secondly, after M is
determined, whether a term in Cp0 is effective or not can be checked. An effective controller must satisfy
inequality (7). Thus for the effectiveness of a specific nonlinear controller parameter c, this requirement can be
written as

q Y ðjo0Þ
�� ��

qc
o0 for some c. (22)

Consider the specific nonlinear controller parameter c in Cp0 and let all the other nonlinear controller
parameters be zero or assumed to be constants. Then only the nonlinear coefficient ci appears in
CEðH1

1þðp�1Þið:ÞÞ according to Proposition 2. Therefore, only the GFRFs for the orders 1+(p�1)i (for
i ¼ 1,2,3,y) need to be computed to obtain the system output spectrum in Eq. (13). According to Eq. (21), the
output spectrum can be written as

Y ðjo; cÞ ¼ P̄0ðjoÞ þ cP̄1ðjoÞ þ c2P̄2ðjoÞ þ � � � . (23)

It can easily be shown that if ReðP̄0ðjoÞP̄1ð�joÞÞo0 then there must exist e40 such that ((q|Y(jo)|)/qc)o0
for 0ocoe or �eoco0, where Re( � ) is to get the real part of (.). This can be used to find the nonlinear
terms, which are effective. For simplicity, P̄1ð�joÞ can be computed from Eqs. (12) to (16) by letting the
other nonlinear parameters to be zero and P̄0ðjoÞ is the linear part of the output spectrum in this case.
Only the effective nonlinear terms in C(M) is considered. By this way, the structure of the nonlinear
function (8) can be determined. It shall be noted that, in this process the output spectrum needs to be
analytically computed up to at most the third order by using Eqs. (12)–(16). The structure of the control
law (8) can also be determined by simply including all the possible nonlinear terms of degree up to M. Once
the output spectrum is determined by the numerical method in Section 3.4, the detailed values of the
coefficients of these nonlinear terms can be optimized for the control objective (7) in the stability region
developed in the following section. If objective (7) cannot be achieved after M is enough large, this may implies
that objective (7) cannot be achieved by control (8) and the best solution by far can be used as the optimal one
in this case.

3.3. Stability of the closed-loop system

As mentioned above, the stability of a nonlinear system should be guaranteed such that the nonlinear
system can be approximated by a locally convergent Volterra series. Therefore, a range for the nonlinear
controller parameters which can ensure the stability of the closed-loop system (10) can be determined. For
simplicity, Eq. (10) can also be written into a state-space form as

_X ¼ AX� BjðXÞ þ EZ :¼ f ðXÞ þ EZ, (24a)

y ¼ CX�DjðXÞ :¼ hðXÞ. (24b)

The definitions of A, B, C, D, E are appropriate matrices which are the same as system (3–4). Noting that
the exogenous disturbance in Eq. (24) is a periodic bounded signal, and the objective in vibration control is
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often to suppress the output vibration below a desired level, a concept of asymptotic stability to a ball is
adopted in this section. This concept implies that the magnitude of the output for a system is asymptotically
controlled to a satisfactory predefined level. Based on this concept, a general result is then derived to ensure
the stability of the closed-loop nonlinear system (24).

A Ball Br(X) is defined as Br(X) ¼ {X|JXJpr, r40}. A K-function g(s) is an increasing function of s, and a
KL-function b(s, t) is an increasing function of s, but a decreasing function of t. For detailed definitions of
K/KL-functions can refer to Ref. [18].

Asymptotic stability to a Ball: Given an initial state X0ARn and disturbance input Z of a nonlinear system, if
there exists a KL-function b such that the solution X(t,X0, Z) (for tX0) of the system satisfies
JX(t,X0,Z)Jpb(JX0J, t)+r, 8t40, then the system is said to be asymptotically stable to a ball Br(X), where
r is an upper bound function of Z, i.e., there exist a K-function g such that r ¼ g(JZJN).

Assumption 1. There exists a K-function s such that the output function h(X) of the nonlinear system (24)
satisfies Jh(X)Jps(JXJ).

Proposition 3. Suppose Assumption 1 holds, then the following statements are equivalent:
(a)
 There exist a smooth function V:RL-RX0 and KN-functions b1, b2 and K-functions a, g such that

b1ð Xk kÞpV ðXÞpb2ð Xk kÞ and
qV ðXÞ

qX
f ðXÞ þ EZ
	 


p� að Xk kÞ þ gð Z
�� ��

1
Þ. (25)
(b)
 System (24) is asymptotically stable to the ball Br(X) with r ¼ b1ð2b
�1
2 a�1gðkZk1ÞÞ, and the output of system

(24) is asymptotically stable to the ball Bs(2r)(y).
Proof. See Appendix A. &

Note that Proposition 3 can guarantee the asymptotical stability to a ball of system (24) when subject to
bounded disturbance, and asymptotical stability to zero when the disturbance goes to zero. This is right the
property of fading memory which is required for the existence of a convergent Volterra-series approximation
for the system input–output relationship [15]. Though it is not easy to derive a general stability condition for
the general controller (5), there are always various methods [19] to choose a proper Lyapunov function based
on Proposition 3 to derive a stability condition for a specific controller.

3.4. A numerical method for the nonlinear feedback controller design

The nonlinear controller parameters can be determined by solving Eq. (17) to satisfy performance (6) or (7)
under the stability condition. However, it can be seen that the analytical derivation of the output spectrum of
system (10) involves complicated symbolic computation for higher nonlinear orders than 5. To circumvent this
problem, as discussed in Section 3.1.1, the following numerical method can be used since the detailed
polynomial structure of the OFRF is known by using the method in Section 3.1:
(1)
 The system OFRF can be expressed as Y ðjoÞY ð�joÞ ¼ jY ðjoÞj2 ¼ C ~PðjoÞ according to Eq. (21) with a
finite polynomial degree, where ePðjoÞ is a complex-valued function vector,

C ¼ 1 c1 c2 c3 � � � cK!
� �
¼ ðCEðH1

1ð�ÞÞ � CEðH1
2ð�ÞÞ � � � � � CEðH1

N ð�ÞÞÞ � ðCEðH
1
1ð�ÞÞ � CEðH1

2ð�ÞÞ � � � � � CEðH1
N ð�ÞÞÞ.
(2)
 Collect the system time domain steady output yi(t) under different values of the controller parameters
Ci ¼ [1 c1i, c2i,y, c(K!)i] for i ¼ 1,2,3,y,Ni.
(3)
 Apply the Fast Fourier transform (FFT) to yi(t) to obtain Yi(jo), then obtain the magnitude |Yi(jo0)|
2 at

frequency o0, and finally form a vector YY ¼ ½jY 1ðjo0Þj
2; . . . ; jY Ni

ðjo0Þj
2	T.
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(4)
 Obtain the following equation:

1; c11; c12; . . . ; c1;K !

1; c21; c21; . . . ; c2;K !

� � � ; � � � ; � � � ; � � � ; � � �

1; cNi1; cNi2; . . . ; cN ;K!

266664
377775

~P0

~P1

..

.

~PK !

2666664

3777775 ¼
jY 1ðjo0Þj

2

jY 2ðjo0Þj
2

..

.

jY Ni
ðjo0Þj

2

2666664

3777775; i:e:; wC
ePðjo0Þ ¼ YY.
(5)
 Evaluate the function ~Pðjo0Þ by using least squares

~Pðjo0Þ ¼ cT
CcC

� �1
cT

CYY .
(6)
 Finally, the desired nonlinear controller parameters C* for given Y* at a specific frequency o0 can be
determined according to

Y n ¼ Cn ePðjo0Þ.
The numerical method above is very effective for the implementation of the design of the proposed
nonlinear controller parameters, which will be verified by a simulation study in Section 5.

Although there are some time domain methods which can address the nonlinear control problems based on
Lyapunov stability theory such as the back-stepping technique and feedback linearization [18], etc., few results
have been achieved for the design and analysis of a nonlinear feedback in the frequency domain to achieve a
desired frequency domain performance. Based on the analytical relationship between system output spectrum
and controller parameters defined by the OFRF, the analysis and design of nonlinear feedback can be conducted
in the frequency domain. For a summary, a general procedure for this new method is given as follows:
(A)
 Determination of the structure of the nonlinear feedback function in Eq. (8).
This is to determine the value of M and choose the effective nonlinear controller parameters Cp0(.)
(p ¼ 2,3,y,M). This can follow the discussion in Section 3.2.
(B)
 Derivation of the region for the nonlinear feedback parameters in Cp0(.) for p ¼ 2,3,y,M.
This is to ensure the stability of the nonlinear closed-loop system (10), which can be conducted by
applying Proposition 3 to derive a stability condition for the closed-loop system in terms of the nonlinear
controller parameters.
(C)
 Determination of the OFRF by using the numerical method and the optimal values for the nonlinear
parameters.
This step includes two tasks. That is, (C1) determination of the detailed polynomial expression for the
output spectrum according to Eq. (21) with respect to the specific nonlinear feedback (8) when the
maximum nonlinearity order M is larger than 3, and (C2) determination of the desired value for each
nonlinear controller parameter within the stability region to achieve the control objective (6) or (7) by
using the numerical method provided above.
4. Simulation study

Consider a simple case of the model in Eqs. (1) and (2), which can be written as

M €x ¼ �Kx� a1 _xþ ðZþ uÞ;

y ¼ Kxþ a1 _x� u:

(
This is the model of a vibration isolation system studied in Ref. [20] (Fig. 1), where y(t) is the transmitted

force from the disturbance Z(t) to the ground, K is a spring and a1 is a damping.
Following the procedure in Section 3, a nonlinear feedback active controller u(t) is designed and analysed

for the suppression of output vibration in the frequency domain. It will be shown that a simple nonlinear
feedback can bring much better improvement on the output performance, compared with a linear feedback.
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Fig. 1. A vibration isolation system.
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The effect of the nonlinear feedback on system output performance is clearly demonstrated in the frequency
domain by following the procedure above.

4.1. Determination of the structure of the nonlinear feedback controller

Considering the nonlinear feedback in Eq. (8), for this simple system, M is directly chosen to be 3, and all
the other nonlinear controller parameters are chosen to be zero except C30(1 1 1) ¼ a3 which represents a
nonlinear damping. If C30(1 1 1) ¼ a3 is not effective, more other nonlinear terms can be chosen. Later analysis
will show that this choice is effective.

The nonlinear feedback control law now is

u ¼ �a3 _x
3.

Then the closed-loop system is obtained as

M €x ¼ �Kx� a1 _x� a3 _x
3 þ Z;

y ¼ Kxþ a1 _xþ a3 _x
3:

(
(26a,b)

Note that system (26) is a very simple case of system (10), that is, L ¼ 2, C̄10ð2Þ ¼M,
C̄10ð1Þ ¼ a1; C̄10ð0Þ ¼ K, C̄30ð1 1 1Þ ¼ a3; C̄01ð0Þ ¼ �1 and ~C10ð1Þ ¼ a1; ~C10ð0Þ ¼ K ; ~C30ð1 1 1Þ ¼ a3; all
other parameters in model (10) are zero. Moreover, assume the disturbance input is Z(t) ¼ Fd sin(8.1t), which
is a single tone function as a simple case of Eq. (12). Now the task for the nonlinear feedback controller design
is to determine a3 such that system (26) satisfies the control objective (7).

To verify the effectiveness of this nonlinear damping, the output spectrum should be computed up to the third
order as discussed in Step(B). Noting that only C30(1 1 1) ¼ a3 and all the other nonlinear parameters Cp0 for p42
are zero. According to Eqs. (18)–(20), the following parametric characteristics of the GFRFs can be obtained:

CEðH1
2ð�ÞÞ ¼ C20 �

Xð2þ1Þ=2½ 	

p¼2

Cp0 � CEðH1
2�pþ1ð�ÞÞ ¼ C20 ¼ 0,

CEðH1
3ð�ÞÞ ¼ C30 �

Xð3þ1Þ=2½ 	

p¼2

Cp0 � CEðH1
3�pþ1ð�ÞÞ ¼ C30 ¼ a3,

CEðH1
4ð�ÞÞ ¼ C40 �

Xð4þ1Þ=2½ 	

p¼2

Cp0 � CEðH1
4�pþ1ð�ÞÞ ¼ 0,

CEðH1
5ð�ÞÞ ¼ C50 �

Xð5þ1Þ=2½ 	

p¼2

Cp0 � CEðH1
5�pþ1ð�ÞÞ ¼ C30 � CEðH1

3ð�ÞÞ ¼ a2
3; . . . .
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It is easy to check from Proposition 2 that

CEðH1
2nþ1ð�ÞÞ ¼ an

3 for n40 and all other CEðH1
i ð�ÞÞ ¼ 0. (27)

This shows that only H1
2nþ1ð�Þ for n40 are nonzero and all others are zero. Therefore, the output spectrum

can be computed from Eqs. (13, 16) with only odd order GFRFs as

Y ðjoÞ ¼
XN

n¼1

1

22nþ1

X
ok1
þ���þok2nþ1

¼o

H2
2nþ1ðjok1

; . . . ; jok2nþ1
ÞF ðok1

Þ � � �F ðok2nþ1
Þ

¼
1

2
H2

1ðjoÞF ðoÞ þ
a3

8

X
ok1
þ���þok3

¼o

G2
3ðjok1

; jok2
; jok3
ÞF ðok1

ÞF ðok2
ÞF ðok3

Þ

þ
a2
3

32

X
ok1
þ���þok5

¼o

G2
5ðjok1

; . . . ; jok5
ÞF ðok1

Þ � � �F ðok5
Þ þ � � � ,

:¼ P̄0ðjoÞ þ a3P̄1ðjoÞ þ a2
3P̄2ðjoÞ þ � � � , (28a)

where

P̄0ðjoÞ ¼
1

2
H2

1ðjoÞF ðoÞ ¼
�jða1ðjoÞ þ KÞF d

2MðjoÞ2 þ 2a1ðjoÞ
1
þ 2K

,

P̄1ðjoÞ ¼ �
3

8
MF 3

do
5 H1

1ðjoÞ
�� ��2½H1

1ðjoÞ	
2,

P̄2ðjoÞ ¼ �
3j

32
MF 5

d joH1
1ðjoÞ

�� ��4½joH1
1ðjoÞ	

2ðjoÞ

� ðj3oH1
1ðj3oÞ � j3oH1

1ð�joÞ þ j6oH1
1ðjoÞÞ. (28b)

Note that carrying out the computation above, the analytical relationship between the output spectrum and
nonlinear parameter a3 can be obtained explicitly for up to any high orders. It can be checked that
ReðP̄0ðjo0ÞP̄1ð�jo0ÞÞ ¼ 0.5ðP̄0ðjo0ÞP̄1ð�jo0Þ þ P̄0ð�jo0ÞP̄1ðjo0ÞÞ ¼ �31.132o0 when a340, o0 ¼ 8.1 rad/s
and other system parameters as given in the simulation studies. Hence, the nonlinear control parameter a3 is
effective. If there are other nonlinear controller parameters, the same method can be used to check the
effectiveness as discussed in Step(B). Only the effective nonlinear terms are used in the controller.

4.2. Derivation of the stability region for the parameter a3

According to Proposition 3, the following result can be obtained.

Proposition 4. Consider the closed-loop system (26), and suppose the exogenous disturbance input satisfies

JZ(t)JpFd. The system is asymptotically stable to a ball B
Fd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQÞ

�1�
p ðXÞ, if a340 and additionally there exist

P ¼ PT40, b40 and e40 such that

Q ¼
�ATP� PA� ��1PEETP �bATCT

þ PB� bPEETCT


 þ2bCB� ��1b2CEETCT

" #
40.

Moreover, the closed-loop system (26) without a disturbance input is global asymptotically stable if the above

inequality holds with E ¼ 0. Here,

A ¼

0 1

�
K

M
�

a1

M

24 35; B ¼ 0;
1

M

� �T
; C ¼ ½0; 1	; E ¼ 0;

1

M

� �T
.

Proof. See Appendix A. &

It is noted that the inequality in Proposition 4 has no relation with a3, the left part of the inequality is
determined by the linear part of system (26), and the whole inequality can be checked by using the linear
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matrix inequalities technique [21]. This also implies that the value of a3 has no effect on the stability of the
system if the inequality is satisfied. Hence, the nonlinear controller parameter a3 is now only restricted to the
region [0,N), provided that the linear system satisfies the inequality condition.

4.3. Derivation of the OFRF and determination of the desired value of the nonlinear parameter a3

Using Eq. (27), the parametric characteristics of the output spectrum of nonlinear system (26) can be
obtained as

CEðY ðjoÞÞ ¼ CEðH1
1ð�ÞÞ � CEðH1

2ð�ÞÞ � � � � � CEðH1
Nð�ÞÞ ¼ 1 a3 a2

3 � � � aZ
3

h i
,

where Z ¼ ðN � 1Þ=2
� �

. Therefore, the system output spectrum can be written as a polynomial expression as

Y ðjoÞ ¼ P̄0ðjoÞ þ a3P̄1ðjoÞ þ a2
3P̄2ðjoÞ þ � � � þ aZ

3 P̄ZðjoÞ.

Hence,

Y ðjoÞY ð�joÞ ¼ Y ðjoÞ
�� ��2 ¼ P̄0ðjoÞ

�� ��2 þ a3 P̄0ðjoÞP̄1ð�joÞ þ P̄0ð�joÞP̄1ðjoÞ
� 

þ a2
3ð P̄1ðjoÞ
�� ��2

þ P̄0ðjoÞP̄2ð�joÞ þ P̄0ð�joÞP̄2ðjoÞÞ þ � � � . (28c)

Clearly, |Y(jo)|2 is also a polynomial function of a3. Given the magnitude of a desired output frequency
response Y* at any frequency o0, a3 can be solved from Eq. (28c) provided that |Y(jo)| can be approximated
by a polynomial expression of a finite order. In order to determine a desired value for a3 to achieve the control
objective (7), the numerical method proposed in Section 3.4 is used. Since Eq. (28c) is a polynomial function of
a3, |Y(jo)|2 can be directly approximated by a polynomial function of a3 without computation of higher order
GFRFs as follows:

Y ðjoÞY ð�joÞ ¼ Y ðjoÞ
�� ��2 � a2Z

3
~P2Z þ � � � þ an

3
~Pn þ an�1

3
~Pn�1 þ � � � þ a3

~P1 þ P̄0ðjoÞ
�� ��2, (29a)

where |Y(jo)|2 can be obtained through FFT of the data from simulations or experiments. Given 2Z different
values of a3, i.e., a31, a32,y, a3,2Z, it can be further written as (for each values of a3)

Y ðjoÞi
�� ��2 � a2Z

3i
~P2Z þ � � � a

n
3i
~Pn þ an�1

3i
~Pn�1 þ � � � þ a3i

~P1 þ P̄0ðjoÞ
�� ��2

for i ¼ 1, 2,y, 2Z, i.e.,

a31 a2
31 a3

31 � � � a2Z
31

a32 a2
32 a3

32 � � � a2Z
32

. .
. ..

.

a3;2Z a2
3;2Z a3

3;2Z � � � a2Z
3;2Z

266666664

377777775

~P1

~P2

..

.

~P2Z

2666664

3777775 ¼
Y ðjoÞ1
�� ��2 � P̄0ðjoÞ

�� ��2
Y ðjoÞ2
�� ��2 � P̄0ðjoÞ

�� ��2
..
.

Y ðjoÞ2Z

�� ��2 � P̄0ðjoÞ
�� ��2

26666664

37777775.

Then ~P1; ~P2; . . . ; ~P2Z are obtained as

~P1

~P2

..

.

~P2Z

2666664

3777775 ¼
a31 a2

31 a3
31 � � � a2Z

31

a32 a2
32 a3

32 � � � a2Z
32

. .
. ..

.

a3;2Z a2
3;2Z a3

3;2Z � � � a2Z
3;2Z

266666664

377777775

�1

Y ðjoÞ1
�� ��2 � P̄0ðjoÞ

�� ��2
Y ðjoÞ2
�� ��2 � P̄0ðjoÞ

�� ��2
..
.

Y ðjoÞ2Z

�� ��2 � P̄0ðjoÞ
�� ��2

26666664

37777775. (29b)

Consequently, Eq. (29a) is obtained. Using this method, a polynomial expression of |Y(jo)|2 in any order
can be achieved. Given a desired output frequency response Y* at a frequency o0, a3 can be solved from
Eq. (29a) to implement the design. Note that roots of Eq. (29a) are multiple. According to Proposition 4, the
solution a3 should be a nonnegative real number.
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4.5. Simulation results

In the simulation, the parameters of system (26) are K ¼ 16,000N/m, a1 ¼ 296N s/m, M ¼ 240 kg. The
resonant frequency of the system is o0 ¼ 8.1 rad/s. In order to show the effectiveness and advantage of the
nonlinear feedback controller u ¼ �a3 _x

3, a linear controller u ¼ �a2 _x will be used for comparison.
Firstly, let Fd ¼ 100N. We need to obtain the polynomial function (29a). In order to have a larger working

region of a3, let Z ¼ 6 in Eq. (29a), and a3 ¼ 500, 1000, 2000, 4000, 6000, 8000, 10,000, 12,000, 14,000, 16,000,
18,000, and 20,000. Under these different values of a3, the output frequency response of the system was
obtained and the corresponding output spectrum was determined via FFT operations. Then ~PnðjoÞ for
n ¼ 1,y, 12 were obtained according to Eq. (29b), which are summarized partly in Table 1. For comparisons,
the corresponding theoretical results were also computed from Eq. (28a–c) and are given partly in Table 1.
From Table 1, it can be seen that there is a good match between the data analysis results and the theoretical
computations although there are some errors. This result shows that the theoretical computation results are
basically consistent with the results from the simulation analyses. It can also be seen from the numerical
analysis results in Table 1 that Eq. (29a) is in fact an alternative series in this case.

Fig. 2 shows the results of the system output spectrum under different values of the nonlinear control
parameter a3 and provides a comparison between theoretical computations using polynomial expression (28c)
up to the third order and the numerical results using the polynomial expression (29a) up to the 12th order.
This result demonstrates the analytical relationship between the nonlinear control parameter and the system
output spectrum, and shows that the theoretical results have a good match with the numerical results when a3
is small since only up to the third-order GFRF are used in the theoretical computations. Hence, with an
increase of a3, the numerical method has to be used in order to give correct results. Moreover, it should be
noted that the magnitude of the system output spectrum decreases with the increase of a3. This verifies that the
nonlinear control parameter a3 is effective for the control problem.

Without a control input, the system output frequency spectrum is as shown in Fig. 3(b), where
Y ðjoÞ

��
o0
¼ 335:71. Note that the output response spectrum shown in the figures of this paper is 2|Y| not |Y|,

that is also applied on the plot of the output spectrum using the theoretical computation. This is because 2|Y|
represents the physical magnitude of the system output at the frequency o0. If the desired output frequency
spectrum is set to be Y* ¼ 180, then the calculation according to Eq. (29a,b) and Proposition 4 yields
a3 ¼ 11,869. The output frequency spectrum under the nonlinear feedback control is shown in Fig. 3(a), where
Y ðjoÞ

��
o0
¼ 180:08, and hence the result matches the desired result quite well. The system outputs in the time

domain before and after nonlinear feedback control are given in Fig. 4. It can be seen that the system steady-
state performance is considerably improved when the nonlinear controller is used.

In order to further demonstrate the advantage of the nonlinear feedback, consider a linear damping
controller u ¼ �275 _x. Under this linear control input, the system output frequency response as shown in
Fig. 5 is similar to that achieved with the nonlinear controller. However, when Fd is increased to 200N, the
output frequency response is quite different under the two controllers. The nonlinear feedback controller
results in a much smaller magnitude of output frequency response at frequency o0, referring to Fig. 6. Fig. 7
shows the results of the system outputs in the time domain under the two different control inputs, indicating
Table 1

Comparison between simulation and theoretical results

Simulation results Theoretical results

jP̄0ðjoÞj2 1.1270e+05 jP̄0ðjoÞj2 1.1257e+05

~P1 �58.9652 P̄0ðjoÞP̄1ð�joÞ þ P̄0ð�joÞP̄1ðjoÞ �62.2641

~P2 0.0423 jP̄1ðjoÞj2 þ P̄0ðjoÞP̄2ð�joÞ þ P̄0ð�joÞP̄2ðjoÞ 0.0615

~P3 �2.3762e�005 – –

~P4 9.1382e�009 – –

~P5 �2.3593e�012 – –

^ ^ ^ ^
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Fig. 3. Output spectrum: (a) without a feedback control and (b) with the designed nonlinear feedback.
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the nonlinear controller has a much better result than the linear controller. When the input frequency o0 is
increased to be 15 rad/s, the same conclusions can be reached for the two controllers, referring to Fig. 8. When
the input frequency is decreased to be 5 rad/s, the output spectrums under the two controllers are similar
(see Fig. 9). On the otherhand, although increase of the liner damping can also achieve better output
performance at the driving frequency, this will degrade the output performance at high frequencies as known
in literature (Fig. 10). However, the nonlinear damping has no obviously such a limitation (Fig. 11).

The results demonstrate that a simple nonlinear feedback to realize a cubic nonlinear damping can achieve
better performances than a linear damping control for vibration suppression both in low and high frequencies.
The frequency domain method proposed in this study provides an effective approach to the analysis and
design of the nonlinear feedback. Although only a simple case with only one nonlinear term is studied in this
simulation, much more complicated cases with multiple nonlinear parameters can also be analysed and
designed straightforward by following the same method. It should be noted that there may be some other
methods in the literature which can be used to realize the same control purpose of this study, however, the
advantage of this method is that it can directly relate the nonlinear controller parameters to system output
frequency response and therefore the nonlinear controller or structural parameters can be analysed and
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Fig. 5. Output spectrum with the linear feedback control.
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designed in the frequency domain, which is a more understandable way in engineering practice. Furthermore,
the designed controller, for instance the nonlinear damping designed in the example study above, may also be
realized by a passive unite, and the analysis by using this method can be performed directly for a physical
characteristics of a structural unite in a system. This will have great significance in practical applications.

5. Conclusions

A frequency domain approach to the analysis and design of nonlinear feedback to suppress periodic
disturbance for SISO plants is studied and theoretical results associated with this subject are investigated.
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Although there are already some time domain methods, which can address the nonlinear control problems
based on Lyapunov stability theory, few results have been achieved for the design and analysis of a nonlinear
feedback in the frequency domain to achieve a desired frequency domain performance. Based on the analytical
relationship between system output spectrum and controller parameters, this paper provides, for the first time,
a systematic frequency domain approach to exploiting the potential advantage of nonlinearities to achieve a
desired output frequency domain performance for the analysis and design of vibration systems. Compared
with other existing methods for the same purposes, the method in this paper can directly relate the nonlinear
parameters of interest to the system output frequency response and the designed controller may also be
realized by a passive unite in practices. Although the results in this paper are developed for the problem of
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Fig. 8. Output spectrum (a) with the linear feedback control and (b) with the designed nonlinear feedback control, when o0 ¼ 15 rad/s,

Fd ¼ 100, a2 ¼ 275, a3 ¼ 11,869.
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Fig. 9. Output spectrum (a) with the linear feedback control and (b) with the designed nonlinear feedback control, when o0 ¼ 5 rad/s,

Fd ¼ 100, a2 ¼ 275, a3 ¼ 11,869.
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periodic disturbance suppression for SISO linear plants, the idea can be extended to a more general case
(i.e., nonlinear controlled plants) and to address more complicated control problems. Future studies will focus
on these related issues.
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Appendix A. Proofs

Proof of Proposition 1. Regard x(t) and y(t) as two outputs of system (10), i.e., y1(t) ¼ x(t), y2(t) ¼ y(t), and
the exogenous disturbance Z(t) as the input, then derive the GFRFs Hj

nðjok1
; . . . ; jokn

Þ (for j ¼ 1,2 and
n ¼ 1,2,3,y) for system (10). Consider Eq. (10a), which is consistent with the model studied in Ref. [9]. Hence,
the nth GFRF of Eq. (10a), denoted by H1

nðjo1; . . . ; jonÞ, can be obtained by directly applying the results in
Ref. [9] as follows:

H1
nðjo1; . . . ; jonÞ ¼

�1PL
l1¼0

C̄10ðl1Þðjo1 þ � � � þ jonÞ
l1

Xn

p¼2

XL

l1���lp¼0

C̄p0ðl1 � � � lpÞH
1
n;pðjo1; . . . ; jonÞ

0@
�
XL

l1���ln¼0
C̄0nðl1 � � � lnÞðjo1Þ

l1 � � � ðjonÞ
ln

1A, (A.1)

where C̄01ð0Þ ¼ e, all other C̄0nð�Þ ¼ 0; H1
n;pðjo1; . . . ; jonÞ and H1

n;1ðjo1; . . . ; jonÞ are Eqs. (16b) and (16c),
respectively. Note that C̄01ð0Þ ¼ e and all the other C̄0nð�Þ ¼ 0, the first-order GFRF (linear frequency-
response function) is

H1
1ðjo1Þ ¼

PL
l1¼0

C̄01ðl1Þðjo1Þ
l1PL

l1¼0
C̄10ðl1Þðjo1Þ

l1
¼

ePL
l1¼0

C̄10ðl1Þðjo1Þ
l1
. (A.2)

Using Eq. (A.2), Eq. (A.1) can be rewritten into Eq. (16d). Consider Eq. (10b), which has two outputs, i.e.,
one pure output nonlinearities in terms of Dix(t) and one linear pure output term y(t). Note that there is no
nonlinearities in terms of y(t). Hence, the nth-order GFRF of the output y(t) is completely dependent on the
nth-order GFRF of the first ‘‘output’’ x(t). Following the probing method [22] and also referring to the
discussions in Ref. [9], it can be obtained as

H2
nðjo1; . . . ; jonÞ ¼

Xn

p¼1

XL

l1���lp¼0

~Cp0ðl1 � � � lpÞH
1
n;pðjo1; . . . ; jonÞ.
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Note that here p ¼ 1 represents the linear effect from x(t), which is different from Eq. (A.1) where p is
counted from 2. This is Eq. (16a). This completes the proof. &

Proof of Proposition 3. To prove Proposition 3, the following lemmas are needed.

Lemma 3. Consider two positive, scalar and continuous process in time t, x(t) and y(t) satisfying y(t)pa(x(t)) (for

tX0), where a is a K-function. If x(t) is asymptotically stable to a ball Br(x), then y(t) is asymptotically stable to

a ball Ba(2r)(y).

Proof. There exists a KL-function b, such that function x(t) (for tX0) satisfies x(t)pb(x(0),t)+r, 8t40.
Therefore,
y(t)pa(x(t)) ¼ a(b(x(0),t)+r)pa(max(2b(x(0),t),2r)) ¼ max(a(2b(x(0),t)),a(2r))pa(2b(x(0),t))+a(2r). Note
that a(2b(x(0),t)) is still a KL-function of x(0) and t, thus the lemma is concluded. &

From Lemma 3, if there exists a K-function s such that the output function h(X) of a nonlinear system
satisfies Jh(X)Jps(JXJ), then the system output is asymptotically stable to a ball if the system is
asymptotically stable to a ball.

Lemma 4. Consider a scalar differential inequality _yðtÞp� aðyðtÞÞ þ g, where a is a K-function and g is a

constant and y(t) satisfies Lipschitz condition. Then there exists KL-function b such that

yðtÞpbð yðt0Þ � a�1ðgÞ
�� ��; tÞ þ a�1ðgÞ.

Proof. Consider the differential equation _yðtÞ ¼ �aðyðtÞÞ. From Lemma 10.1.2 in Ref. [18] it is known that,
there is a KL-function b such that y(t) ¼ b(y(t0),t). Similarly, considering the differential equation
_yðtÞ ¼ �aðyðtÞÞ þ g, then y(t) ¼ sign(y(t0)�a

�1(g)) b(|y(t0)�a
�1(g)|,t)+a�1(g). Thus from the comparison

principle and the differential inequality _yðtÞp� aðyðtÞÞ þ g, the lemma follows. &

Then to prove Proposition 3, it follows from Eq. (25) that

_V ðXðtÞÞp� aðkXkÞ þ gðkZk1Þ. (A.3)

Noting V(X)pb2(JXJ), we have kXkXb�12 ðV ðXÞÞ. Substituting this inequality into Eq. (A.3), we have

_V ðXðtÞÞp� aðb�12 ðV ðXÞÞÞ þ gðkZk1Þ.

From Lemma 4, it follows that, there exist a KL-function b, such that

V ðXðtÞÞpbðV 0; tÞ þ b�12 a�1gðkZk1Þ, (A.4)

where V 0 ¼ jV ðXðt0ÞÞ � b�12 a�1gðkZk1Þj. From Eq. (A.4), V(X(t)) is asymptotically stable to the ball

Bb�12 a�1gðkZk1Þ
ðV Þ. Noting b1(JXJ)pV(X), we have JXJpb1(V(X)). From Lemma 3, X(t) is asymptotically stable

to the ball Br(X). Furthermore, since Assumption 1 holds, from Lemma 3, y(t), is asymptotically stable to the

ball Bo(2r)(y). This completes the proof of sufficiency. The proof of the necessity of the proposition can follow

a similar method as demonstrated in the appendix of Ref. [23]. The proof completes. &

Proof of Proposition 4. The state-space equation of system (26a) can be written as _X ¼ AX� Bfþ EZ,
where X ¼ ½x; _x	T, f ¼ a3s

3, s ¼ CX. Choose a Lyapunov candidate as

V ¼ XTPXþ
a
2
s4, (A.5)

where a40. Eq. (A.5) further follows:

_V ¼ XTP _Xþ _X
T
PXþ 2as3C _X ¼ XTðATPþ PAÞX� 2XTPBfþ 2XTPEZ

þ
2a
a3

fCðAX� Bfþ EZÞ ¼ XTðATPþ PAÞX� 2XTPBfþ
2a
a3

fCAX�
2a
a3

fCBfþ 2XTPEZ

þ
2a
a3

fCEZ. (A.6)
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Let Z ¼
X

f

" #
; T ¼

PE
a
a3
CE

24 35, and b ¼ a/a3 then Eq. (A.6) follows:

_V ¼ ZT
ATPþ PA bATCT

� PB


 �2bCB

" #
Zþ ZTTZpZT

ATPþ PA bATCT
� PB


 �2bCB

" #
Z

þ ��1ZTTTTZþ �ZTZ ¼ ZT
ATPþ PA bATCT

� PB


 �2bCB

" #
þ ��1TTT

 !
Zþ �Z2

¼ � ZTQZþ �Z2.

Note that, in the inequality above, the following inequality is used:

2ZTTZp��1ZTTTTZþ �ZTZ for any �40.

If Q ¼ QT40, then ZTQZXlmin(Q)JXJ2 is a K-function of JXJ. Hence, according to Proposition 3, the system

is asymptotically stable to a ball Br(X) with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQÞ

�1� supðkZk2Þ
q

¼ Fd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lminðQÞ

�1�
q

. Additionally, when

there is no exogenous disturbance input, and if Q ¼ QT40 holds with E ¼ 0, then it is obvious that the system
without a disturbance input is globally asymptotically stable. This completes the proof. &
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